Capitalización y descuento simple
- Gabriel Mora de la Fuente
- hace 3 años
- Vistas:
Transcripción
1 Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados Método de los multplcadores fjos Método de los dvsores fjos 2.4. Descuento smple comercal Magntudes dervadas 2.5. Cálculo del descuento smple. Métodos abrevados Método de los multplcadores fjos Método de los dvsores fjos 2.6. Descuento smple raconal o matemátco Tanto de nterés equvalente a uno de descuento Ejerccos propuestos
2 8 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple Se denomna así, a la operacón fnancera que tene por objeto la consttucón de un captal medante la aplcacón de la ley fnancera de captalzacón smple, o ben, a la que nos permte la obtencón de un captal fnanceramente equvalente a otro, con vencmento posteror, aplcando la ctada ley fnancera. La captalzacón smple o nterés smple, es una operacón fnancera generalmente a corto plazo, en la que los ntereses no se acumulan al captal. C 0 tgα = C n I 0 Fgura 2.1: Captalzacón smple n Las varables a consderar, son: C 0 = valor actual o captal ncal, I = ntereses, C n = valor fnal o montante de la operacón, = tasa de nterés, n = número de períodos. En cualquer caso, n e, han de estar referdos a la msma undad de tempo. En la captalzacón smple, el deudor, al vencmento ha de pagar el captal más los ntereses, es decr: C n = C 0 +I (2.1) El valor fnal C n en captalzacón smple, transcurrdos n períodos y al tanto, lo podemos determnar para un captal C 0, como: C 1 = C 0 + C 0 = C 0 (1+) C 2 = C 1 + C 0 = C 0 (1+)+ C 0 = C 0 (1+2 ) C 3 = C 2 + C 0 = C 0 (1+2 )+ C 0 = C 0 (1+3 ). C n = C n 1 + C 0 = C 0ä1+(n 1)ç+ C 0 = C 0 (1+ n) C n = C 0 (1+ n) (2.2) expresón que relacona el montante o captal fnal, transcurrdos n períodos de captalzacón, con el captal ncal prestado. Al térmno (1+ n), se le denomna factor de captalzacón smple, y es un número tal que multplcado por el captal ncal, nos permte obtener el captal fnanceramente equvalente al fnal del período n y que concde con el captal fnal C n. S comparamos (2.1) con (2.2), I = C n C 0 I = C 0 (1+ n) C 0
3 2.1 Captalzacón smple o nterés smple 9 I = C 0 +C 0 n C 0 obtenemos, I = C 0 n (2.3) expresón que nos permte obtener los ntereses devengados o rendmento producdo por un captal C 0 m durante un período n, y de la que se deduce que éstos son proporconales al captal, al nterés untaro y al tempo. S expresamos el tempo en m-ésmos de años (semestres, trmestres, meses, semanas,...) las fórmulas (2.2) y (2.3) se pueden generalzar: C n = C n 0 1+ sendo m la fraccón del año. 1 años 2 semestres 4 trmestres 12 meses 24 quncenas 52 semanas 360 días del año comercal 365 días del año natural o cvl I = C 0 n m Es usual defnr el sstema de captalzacón smple por medo de las propedades señaladas a. Así suele decrse que la funcón de captalzacón smple es aquella que defne un sstema fnancero en que el rédto acumulado es proporconal a la ampltud del período. Ejemplo 2.1 Calcular los ntereses producdos y el mporte total adeudado de un captal de 450e durante 60 días al 7 % de nterés smple. I = C 0 n I = 450 0, = 5,25 C n = C 0 +I C n = 450+5,25 = 455,25 Utlzando la calculadora fnancera, para obtener I y C n, 60 n CHS f INT obtenendo 5, 25 y pulsando + dará como resultado 455, Magntudes dervadas S despejamos C 0 de (2.2) se tene: C 0 = C n (1+ n) (2.4) que nos permte calcular el valor captal ncal o actual s se conoce el montante, el tanto y la duracón. Para calcular n o número de períodos, se aplcará: n = C n C 0 C 0 (2.5)
4 10 Captalzacón y descuento smple Ejemplo 2.2 Calcular el montante de 1 000e al 4 % de nterés anual, al cabo de 90 días. Cuánto tempo será precso que transcurra para que el montante sea un 5 % más? Aplcando (2.2) y (2.5), C n = C 0 (1+ n) C n = , =1010 n = C n C 0 C 0 n = ,04 = 1,25 años 2.2. Intereses antcpados En ocasones se plantean operacones en las que el prestamsta cobra los ntereses por antcpado, es decr, en el msmo momento en el que se concerta la operacón. S el captal prestado es C 0, el tpo de nterés antcpado y la duracón n, los ntereses se obtenen tal como hemos vsto en (2.3) como I = C 0 n, con lo que en el orgen se recbe: C 0 C 0 n = C 0 (1 n) Se debe verfcar, de donde, C 0 (1 n)(1+ n) = C 0 = 1 1 n 1 = n 1 n del msmo modo, = y s n = 1, = 1 1+ n = 1+ (2.6) 2.3. Cálculo de los ntereses smples. Métodos abrevados Los ntereses, tal como se ha vsto en (2.3), tenen por cuantía la expresón I = C n C 0. Normalmente, el tempo n y el tpo de nterés están referdos al año como undad de tempo, pero al aplcarse la ley de nterés smple en operacones a corto plazo (nferores al año), se aplcan métodos abrevados cuya utldad práctca se manfesta cuando hay que calcular los ntereses producdos por varos captales. Los dos más utlzados son: Método de los multplcadores fjos S al producto C 0 n del captal por el tempo se le desgna por N y al cocente 360 ó por M, entonces la fórmula para el cálculo de los ntereses se expresará medante el 365 producto del llamado número comercal N, por el multplcador fjo M, es decr: I = N M (2.7)
5 2.4 Descuento smple comercal Método de los dvsores fjos S pasa a dvdr al denomnador y al cocente 360 representa por D la fórmula del nterés se expresará: ó 365 llamado dvsor fjo, se le I = N D (2.8) Ejemplo 2.3 Calcular los ntereses producdos por un captal de 3 500e en 60 días a un tpo de nterés del 6 % anual, s se utlza el año comercal utlzando para ello los métodos abrevados. N = = M = 0, = 0, D = 360 0,06 = 6000 I = N M = 35 I = N D = Descuento smple comercal La ley fnancera del descuento smple comercal se defne como aquella en la que los descuentos de un perodo cualquera son proporconales a la duracón del perodo y al captal antcpado o descontado. Se trata de una operacón nversa a la de captalzacón smple. Cuando se descuenta un captal de cuantía C 0, por n años, el valor descontado D C n C 0 0 n Fgura 2.2: Descuento smple o actual que se obtene es: C 0 = C n (1 d n) (2.9) C n se conoce con los nombres de captal fnal o captal nomnal y a C 0 se le desgna como valor actual, valor efectvo o valor descontado. Este sstema de descuento tene como lmtacón n = 1 d tal como puede verse en el fgura 2.3 por tanto, será váldo hasta n < 1 d.
6 12 Captalzacón y descuento smple d n Fgura 2.3: Campo de valdez Magntudes dervadas El número de años n y el tanto d se calculan en: n = C n C 0 C n d d = C n C 0 C n n (2.10) (2.11) Ejemplo 2.4 Calcular el valor descontado, en descuento comercal, de un captal de e que vence dentro de 4 años, s el tanto de descuento es el 6 %. Hacendo uso de (2.9), se tene: C 0 = C n (1 d n) = (1 0,06 4) = Cálculo del descuento smple. Métodos abrevados El valor descontado de un captal de cuantía C n que vence dentro de n períodos es según (2.9) C 0 = C n (1 d n) por lo que el descuento efectuado es: D c = C n C 0 = C n d n (2.12) debendo tenerse presente que el tanto d y el tempo n están referdos a la msma undad de tempo (habtualmente el año). Al aplcarse la ley de descuento smple comercal en operacones a corto plazo, cuya duracón suele venr expresada en días (tal como ocurría con la captalzacón smple), n representará una fraccón del año. La expresón (2.12), según se utlce el año comercal o el cvl, quedará del sguente modo: D c = C n d n Método de los multplcadores fjos D c = C n d n 365 Desgnando por N = C n n al número comercal o smplemente número y al cocente d 360 ó d por el multplcador fjo M, el descuento smple comercal, será: 365 D c = N M (2.13)
7 2.6 Descuento smple raconal o matemátco Método de los dvsores fjos El descuento se expresa por el cocente D c = N sendo N el número comercal y D el D dvsor fjo que representa la fraccón 360 d ó 365 d. D c = N D (2.14) Ejemplo 2.5 Calcular los descuentos efectuados a un captal de e que vence dentro de 120 días s se utlza el año comercal y el tpo de descuento es el 6 %. N = = M = 0, = 0, D = 360 0,06 = 6000 y aplcando las fórmulas (2.12) y (2.13), se tene: D c = C n d n 120 = , = 1500 D c = N M = ,0001 6= 1500 D c = N D = = Descuento smple raconal o matemátco El descuento raconal, que desgnaremos por D r, se calcula sobre el valor efectvo. Es gual al nterés del efectvo C 0 durante el tempo que falta para su vencmento. De la expresón de captalzacón smple C n = C 0 (1+ n), resulta que el valor descontado de un captal C n, (dsponble al cabo de n períodos), será: C 0 = C n 1+ n (2.15) El descuento raconal, D r = C n C 0, es: D r = C n n 1+ n (2.16) expresón de la que se deduce que el descuento raconal no es proporconal al período de antcpo. El valor D r ha sdo obtendo tomando como dato el tpo de nterés que no debe ser confunddo con el tanto de descuento. Consderando la expresón (2.3), el D r se puede tambén obtener como: D r = C 0 n (2.17)
8 14 Captalzacón y descuento smple Tanto de nterés equvalente a uno de descuento Estos son dferentes, pero cabe hablar de un tanto de nterés equvalente a uno de descuento y vceversa. D c = C n d n = C n n 1+ n = D r d = 1+ n d = 1 d n Para n = 1, se tene: d = 1+ = d 1 d Puede observarse que el valor de d es el nterés antcpado vsto en 2.6. (2.18) Ejemplo 2.6 Calcular el descuento raconal que se efectuará sobre un título de e nomnales, que vence dentro de 150 días, s el tomador del título desea obtener un tanto de nterés del 8 % Cuál sería la tasa de descuento equvalente? El descuento raconal es, aplcando (2.15): D r = ,08 1+0, = 967,74 El efectvo en consecuenca, es C 0 = ,74 = 29032,26 el cual garantza obtener la rentabldad. El tanto de descuento equvalente al nterés, sería: d = El descuento comercal, sería: que concde con el del raconal. 1+ n = 0,08 1+0, = 0, D c = C n d n = , = 967,74 Ejerccos propuestos Ejercco 2.1 Una persona ha prestado una cantdad al 8,5 %. Después de 8 años y 3 meses la retra, y la vuelve a prestar, con los ntereses que le ha producdo al 10,5 %. Cuál es la cantdad que prestó al 8,5 %, sabendo que al presente recbe un nterés anual de 5 000e? Solucón: C0 = , 62 Ejercco 2.2 Dos captales cuya suma es de e han estado mpuestos a nterés smple durante el msmo tempo y al msmo tanto, producendo unos captales fnales de e y e. Cuáles eran dchos captales? Solucón: C 1 0 = C2 0 = 23000
9 Ejerccos propuestos 15 Ejercco 2.3 He comprado mercancías por valor de e con un crédto de 15 meses; pero s pago antes de este tempo, me conceden un descuento del 5 %. En qué época tengo que pagar, s no quero desembolsar más que ,60e? Solucón: n = 11 meses y 12 días Ejercco 2.4 Qué cantdad es necesaro prestar al 5,50 % para obtener 200e de ntereses en 132 días? Solucón: C0 = 9917,36 Ejercco 2.5 Calcular el montante de un captal de e al 6 % de nterés anual colocado durante 1 año y 4 semanas en régmen de captalzacón smple. Solucón: Cn = , 31 Ejercco 2.6 Un captal se ha dvddo en tres partes, y se ha mpuesto la prmera al 4 %; la segunda al 5 %, y la tercera, al 6 %, dando en total una gananca anual de 9 244e. S la prmera y tercera parte del captal se huberan mpuesto al 5,5 %, los ntereses correspondentes a estas dos partes serían de e anualmente. Calcular las tres partes del captal, sabendo además que la tercera es los 2/9 de la prmera. Solucón: C 1 0 = C2 0 = C3 0 = Ejercco 2.7 Un captal de cuantía C se ha colocado la cuarta parte al 5 % de nterés durante 30 días, la mtad del resto se ha colocado al 4 % durante 60 días y la otra mtad al 8 % durante 40 días. Determnar la cuantía de C s los ntereses totales son de 2 750e y se utlza el año comercal. Solucón: C = Ejercco 2.8 Un captal colocado durante 10 meses se ha convertdo, junto con los ntereses, en e. El msmo captal, menos sus ntereses durante 17 meses, ha quedado reducdo a e. Determnar el captal y el tanto por cento a que ha estado mpuesto. Solucón: C = = 4% Ejercco 2.9 Hallar por el método de los dvsores fjos los ntereses totales de los captales, colocados en los tempos que se ndcan y dados a contnuacón: e en 45 días; e en 60 días; e en 120 días; e en 80 días; e en 90 días y e en 75 días. El tpo de nterés aplcable es del 6 %. Solucón: I = 8962,50 Ejercco 2.10 Determnar el tempo necesaro para que un captal de cuantía C, colocado al tpo de nterés en régmen de captalzacón smple, genere un montante gual a 3 veces el captal ncal. Solucón: n = 2 Ejercco 2.11 Qué captal fue el que hzo que sus ntereses fueran la mtad del msmo, sabendo que el montante generado ascendó a 1 237,40e? Solucón: C = 824, 93 Ejercco 2.12 Cuánto tempo será necesaro para que un captal se transforme en otro cnco veces mayor a un 8 % de nterés smple anual? Solucón: n = 50 años
Rentas financieras. Unidad 5
Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor
TEMA 8: PRÉSTAMOS ÍNDICE
TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE
Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública
Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos
OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS
P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la
Matemáticas Financieras
Matemátcas Fnanceras Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Profundzar en los fundamentos del cálculo fnancero, necesaros
Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO
CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2
1.- Una empresa se plantea una inversión cuyas características financieras son:
ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 0/04 PRIMERA SEMANA Día 7/0/04 a las 6 horas MATERIAL AUXILIAR: Calculadora fnancera DURACIÓN: horas. a) Captal fnancero aleatoro: Concepto. Equvalente
TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS.
GESTIÓN FINANCIERA. TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. 1.- Funconamento de las cuentas bancaras. FUNCIONAMIENTO DE LAS CUENTAS BANCARIAS. Las cuentas bancaras se dvden en tres partes:
1. Lección 7 - Rentas - Valoración (Continuación)
Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento
Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera
Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca
Matemática Financiera Sistemas de Amortización de Deudas
Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas
ACTIVIDADES INICIALES
Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)
2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo
Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso
PROBLEMAS RESUELTOS DE MATEMÁTICA FINANCIERA 1. PROBLEMAS DE INTERÉS SIMPLE 2.
Indce 1. Problemas de Interés Smple 2. Problemas de Descuento 3. Transformacón de Tasas 4. Problemas de Interés Compuesto 5. Problemas de Anualdades Vencdas 6. Problemas de Anualdades Antcpadas 7. Problemas
I = 2.500 * 8 * 0.08 =$133,33 Respuesta 12 b. $60.000 durante 63 días al 9%. I =$60.000 t =63 días i =0,09
Problemas resueltos de matemátcas fnancera Indce 1. Problemas de Interés Smple 2. Problemas de Descuento 3. Transformacón de Tasas 4. Problemas de Interés Compuesto 5. Problemas de Anualdades Vencdas 6.
GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO
INTRODUCCIÓN La ley 2.555 publcada el día 5 de dcembre de 211 y que entró en vgenca el día 4 de marzo de 212, que modca la ley 19.496 Sobre Proteccón de los Derechos de los Consumdores (LPC, regula desde
CESMA BUSINESS SCHOOL
CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta
RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS
PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS. En las msmas condcones, qué tpo de anualdades produce un monto mayor: una vencda o una antcpada? Por qué? Las anualdades antcpadas producen un monto mayor
CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales
CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología
Matemática Financiera - Rentas constantes
Matemátca Fnancera - Rentas constantes Marek Šulsta Jhočeská unverzta v Českých Budějovcích Ekonomcká fakulta Katedra aplkované matematky a nformatky Unversdad de Bohema Sur Faculdad de Economía Departmento
De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado
Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de
Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.
ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:
UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO
F UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO ACULTAD DE CONTADURÍA Y CIENCIAS ADMINISTRATIVAS MATERIAL DIDÁCTICO: EJERCICIOS RESUELTOS PARA MATEMÁTICAS FINANCIERAS presenta: DR. FERNANDO AVILA CARREÓN
CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA
CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,
Rentas o Anualidades
Rentas o Anualdades Patrca Ksbye Profesorado en Matemátca Facultad de Matemátca, Astronomía y Físca 10 de setembre de 2013 Patrca Ksbye (FaMAF) 10 de setembre de 2013 1 / 31 Introduccón Rentas o Anualdades
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
DEFINICIÓN DE INDICADORES
DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.
TEMA 6. La producción, el tipo de interés y el tipo de cambio: el modelo Mundell-Fleming
TEMA 6. La produccón, el tpo de nterés y el tpo de cambo: el modelo Mundell-Flemng Anhoa Herrarte Sánchez Dpto. de Análss Económco: Teoría Económca e Hstora Económca Curso 2010-2011 Bblografía 1. Blanchard,
Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó
Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor
Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias
Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso
CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1
CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.
Análisis de error y tratamiento de datos obtenidos en el laboratorio
Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a
GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22
DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.
C I R C U L A R N 2.133
Montevdeo, 17 de Enero de 2013 C I R C U L A R N 2.133 Ref: Insttucones de Intermedacón Fnancera - Responsabldad patrmonal neta mínma - Susttucón de la Dsposcón Transtora del art. 154 y de los arts. 158,
PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno
OFICINA DE CAPACITACIÓN, PRODUCCIÓN DE TECNOLOGÍA Y COOPERACIÓN TÉCNICA BIENVENIDOS(AS) FUNDAMENTOS DE MATEMÁTICAS FINANCIERAS
OFICIN DE CPCITCIÓN, PRODUCCIÓN DE TECNOLOGÍ Y COOPERCIÓN TÉCNIC CURSO FUNDMENTOS DE MTEMÁTICS FINNCIERS IH: 30 HORS DURCIÓN: 5 SEMNS MODLIDD: PRESENCIL INICIO Grupo 01: INICIO Grupo 02: martes 4 de novembre
Economía de la Empresa: Financiación
Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se
CANTIDADES VECTORIALES: VECTORES
INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES
GANTT, PERT y CPM INDICE
GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4
FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN
FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades
6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS
TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo
Gestión Financiera. 2 > Capitalización y descuento simple
. 2 > Capitalización y descuento simple Juan Carlos Mira Navarro Juan Carlos Mira Navarro 1 / 25. 2 > Capitalización y descuento simple 1 2 Definición Ley financiera de capitalización simple Factor de
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
TÉCNICAS AUXILIARES DE LABORATORIO
TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar
La planificación financiera
Tema 5 La planfcacón fnancera 5.1 El paso de prevsones económcas a prevsones fnanceras Entre el plan fnancero de una empresa y su plan económco hay dferencas de la msma naturaleza que las estentes conceptualmente
Trabajo y Energía Cinética
Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..
Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles
2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca
Calorimetría - Soluciones. 1.- Cuántas calorías ceden 5 kg de cobre (c = 0,094 cal/g C) al enfriarse desde 36 o C hasta -4 C?
Calormetría - Solucones 1.- Cuántas calorías ceden 5 kg de cobre () al enfrarse desde 3 o C hasta -4 C? m = 5 kg = 5.000 g T = 3 C T f = - 4 C = - T = - (T f T ) = - 5.000 g 0,094 cal/g C (-4 C 3 C) =
El costo de oportunidad social de la divisa ÍNDICE
El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado
SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO PREVISIONAL VOLUNTARIO VINCULADO A ACTIVOS DE INVERSION
SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO PREVISIONAL VOLUNTARIO VINCULADO A ACTIVOS DE INVERSION Incorporada al Depósto de Pólzas bajo el códgo POL 2 13 021 ARTICULO 1: NORMATIVA APLICABLE. El presente
INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR
El Superntendente de Pensones, en el ejercco de las facultades legales contempladas en el artículo 13, lteral b) de la Ley Orgánca de la Superntendenca de Pensones, EMITE el : INSTRUCTIVO No. SP 04 / 2002
UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II
UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con
TEMA 4 Amplificadores realimentados
TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos
RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C
RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.
Valoración de Instrumentos del Vector de Precios
Valoracón de Instrumentos del Vector de Precos VERSIÓN DICIEMBRE VERSIÓN DICIEMBRE CONTENIDO INTRODUCCIÓN.... INSTRUMENTOS FINANCIEROS.... Títulos de Deuda de Emsores Públcos... A) Bonos de Establzacón
Análisis de Sistemas Multiniveles de Inventario con demanda determinística
7 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 00 Análss de Sstemas Multnveles de Inventaro con demanda determnístca B. Abdul-Jalbar, J. Gutérrez, J. Scla Departamento de
Procedimiento al que deberán sujetarse las instituciones de crédito y casas de bolsa que actúen como Formadores de Mercado
Procedmento al que deberán suetarse las nsttucones de crédto y casas de bolsa que actúen como Formadores de Mercado (Dado a conocer medante Crcular 5/011, que adunta el ofco 305.-027/2011, publcada en
2.5 Especialidades en la facturación eléctrica
2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros
VP = 1 VF. Anualidad: conjunto de pagos iguales realizados a intervalos iguales de tiempo.
Ingenería Económca Tema 2.1. Factores de equvalenca y seres de gradentes UNIDAD II. FACTORES USADOS EN LA INGENIERÍA ECONÓMICA Tema 2.1. Factores de equvalenca y seres de gradentes Saber: Descrbr los factores
Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I*
Ejerccos y Problemas Resueltos Paquete ddáctco para el curso de Macroeconomía I* AZCAPOTZALCO Departamento de Economía Ma. Beatrz García Castro** Mayo de 2003 *Agradezco a la ayudante de nvestgacón Paola
DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID
DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas
EXPERIMENTACIÓN COMERCIAL(I)
EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado
v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)
IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores
12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández
MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández
Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis
Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ
Clase 25. Macroeconomía, Sexta Parte
Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos
TEMA 6 AMPLIFICADORES OPERACIONALES
Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal
La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,
17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS
CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables
SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO. PREVISIONAL VOLUNTARIO VINCULADO A ACTIVOS DE INVERSION. Autorizada por
SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO PREVISIONAL VOLUNTARIO VINCULADO A ACTIVOS DE INVERSION. Autorzada por Resolucón N 092 de 01/04/2014 como plan APV. Incorporada al Depósto de Pólzas bajo el
IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas
IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el
METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS
METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS SIARGAF 4.0 FEBRERO 008 CONTENIDO..... Valor en Resgo aramétrco... A) Meddas de Sensbldad... B) Meddas Estadístcas... 6 C) Volatldad... 7 D) Valor
ANÁLISIS DEL CRITERIO COSTE AMORTIZADO. APLICACIÓN A UN PRÉSTAMO CONCERTADO POR EL SISTEMA DE AMORTIZACIÓN FRANCÉS CON TIPO DE INTERÉS INDICIADO
87a ANÁLISIS DEL RITERIO OSTE AMORTIZADO. APLIAIÓN A UN PRÉSTAMO ONERTADO POR EL SISTEMA DE AMORTIZAIÓN FRANÉS ON TIPO DE INTERÉS INDIIADO Mª armen Vall Martínez Alca Ramírez Orellana Profeora Ttulare
CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A.
CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. PERÍODO 201-2020 Introduccón Las Bases Técnco Económcas Prelmnares, en
Leyes de tensión y de corriente
hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr
SISTEMAS COMBINACIONALES
Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,
CAPÍTULO V ESTRUCTURAS ALGEBRAICAS
ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades
Media es la suma de todas las observaciones dividida por el tamaño de la muestra.
Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,
Introducción al riesgo de crédito
Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta
Tema 4: Variables aleatorias
Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son
1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo
EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces
1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116
Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.
Fugacidad. Mezcla de gases ideales
Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar
Análisis Matemático en la Economía: Optimización y Programación. Augusto Rufasto
Análss Matemátco en la Economía: Optmzacón y Programacón arufast@yahoo.com-rufasto@lycos.com www.geoctes.com/arufast-http://rufasto.trpod.com La optmzacón y la programacón están en el corazón del problema
Análisis de Regresión y Correlación
1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón
Modelado de Contratos en Modalidad de Take Or Pay
Modelado de Contratos en Modaldad de Tae Or ay Enrque Brgla, UTE Elías Carnell, UTE Fernando Ron, UTE Resumen-- El objetvo del trabajo es modelar en el software de smulacón de sstemas eléctrcos SIMSEE,
Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire
4 Undad II: Análss de la combustón completa e ncompleta. 1. Are El are que se usa en las reaccones de combustón es el are atmosférco. Ya se djo en la Undad I que, debdo a que n el N n los gases nertes
El análisis de desviaciones sobre el resultado previsto
Tema 6 El análss de desvacones sobre el resultado prevsto Trabajar con presupuestos supone, como fase fnal lógca, el comparar las cfras prevstas con las reales, y proceder a un «análss de desvacones».
ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales
ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva
ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.
9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara
APENDICE A. El Robot autónomo móvil RAM-1.
Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas
OSCILACIONES 1.- INTRODUCCIÓN
OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.
Guía de Electrodinámica
INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan
APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES
APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral
Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013
Tema 6 El modelo IS-LM Prof. Antono Santllana del Barro y Anhoa Herrarte Sánchez Unversdad Autónoma de Madrd Curso 2012-2013 Bblografía oblgatora Capítulo 5, Macroeconomía, (Blanchard et al) Apuntes de
LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA.
LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (España)
LAS TRANSMISIONES EI escalo nam iento de las marchas
sobre el papel UIS IÁRQUEZ Dr. Ing. Agrónornc LAS TRANSMISIONES EI escalo nam ento de las marchas Aunque muchos usuaros consderan que los motores de los tractores son la referenca para cualquer comparacón
16/07/2012 P= F A. Pascals. Bar
El Estado Gaseoso El Estado Gaseoso Undad I Característcas de los Gases Las moléculas ndvduales se encuentran relatvamente separadas. Se expanden para llenar sus recpentes. Son altamente compresbles. enen
Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1
Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale